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Abstract. The theory of the phase equation for elastic scattering, with spherical symmetry, 
is applied to the problem of evaluating efficiently the scattering phase shifts in a partial- 
wave analysis. A fortran source version of the subroutine is available from the author. 

1. Introduction 

The problem of scattering of charged particles from a single fixed scattering centre is one 
which often arises in semiconductor physics. If it is assumed that the scattering is elastic 
then the force experienced by a particle due to the influence of the scattering centre may 
be represented by a potential V(r).  In the spherically symmetric case considered in this 
paper, V then depends only on the radial distance r in a system of spherical coordinates 
r, €I,+ with origin at  the scattering centre. 

The fortran program PHASE which has been written to solve this scattering problem 
requires the following potential function : 

(1) 

I -Vo r -= P o .  

The method of partial waves (Mott and Massey 1949) is used. This assumes that the 
wavefunction $k has the expansion 

where P, is the Legendre polynomial of order 1 and the radial wavefunction u,,&(r) 
satisfies the equation 

d2 I ( I +  1) 
dr2 r2 (3) 

where k2 = 2pE/h2.  As r + CO the solutions of equation (3) have the asymptotic form 

u , , ~  - sin(kr-+nI+6,) (4) 
where the phase shift 6, is a function of k. Integration of the radial wave equation to a 
distance where the asymptotic form (4) is valid is time consuming (Blatt 1957). The 
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subroutine PHASE uses a different method (Kynch 1952) which is described in the following 
section. It gives a much faster computation than direct integration of the radial wave 
equation. 

2. The phase equation 

The solutions of the radial wave equation (3) when V = 0 are the Ricatti-Bessel functions 
(Abramowitz and Stegun 1965) j,(kr) and n,(kr). 

We introduce two new functions S I ,  a, by writing 

ul = (j, + S,nl)a, ( 5 )  

and impose the condition 

.dui d J,-+nn,-(S,a,) = 0. 
dr dr 

This we are free to do because, given U, and S I  (or ai), then a, (or S,) is uniquely determined. 
Then 

du, dj, dn, 
dr - ( dr+s'z)a' 
_ -  (7) 

(the suffix k on U, has been dropped for convenience) and when substituted into (3) we 
get the phase equation : 

We have used the Wronskian relation 

. dn, dj, 1 
jf- - n,- = - 

dr dr k (9) 

in deriving equation (8). Equation (8) is useful because we can establish the following 
asymptotic result : 

lim S,(kr) = tan 6,. 
k r - m  

This may be deduced from the following equation : 

and the resulting asymptotic relation 

a,(kr) + constant as kr --* 00 

together with the asymptotic forms 

jXkr) - sin(kr-3111) 

n,(kr) - cos(kr - 3.1). 
Comparison of equations ( 5 )  and (4) then leads to equation (10). 
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Naturally 6,(kr)  is called the phase function and equation (8) the phase equation. 
The method was first discussed in the literature by Morse and Allis (1933) for S-wave 
scattering. Provided the potential function falls off reasonably rapidly with distance 
equation (8) may be integrated much more quickly than the wave equation to the point 
where the limiting form (equation (10)) is obtained to within a prescribed accuracy. 

3. Numerical integration of the phase equation 

Summary 

To simplify the mathematics a set of dimensionless variables is defined in 5 3.1. Because 
the function evaluations can be expensive a predictor-corrector method was chosen for 
the numerical integration of the phase equation. The non-stiff part of Gear’s program 
DIFSUB (Gear 1971) was used for this purpose. 

In $3.2 the problem of the phase function passing through singularities at odd 
multiples of $T is discussed and the method of Calogero (1963) is described. 

To evaluate Ricatti-Bessel functions j, backward recursion is required if large 1 
values are to be treated. For this purpose the Harwell subroutine FFOSA (Hopgood 1971), 
with slight modification, has been incorporated into subroutine PHASE. It implements 
the algorithm of Corbato and Uretsky (1959) as well as generating the function n,. For 
small values of the independent variable r the functions j, and n, can give rise to underflow 
and overflow respectively. Normalized functions 3, and ii, are defined to overcome this 
problem and the phase function correspondingly transformed. These topics are covered 
in 5 3.3. To start the integration initial values of the function S ,  are required. This part 
of the problem is treated briefly in 5 3.4. 

3.1. Dimensionless equations 

A scaling length a is defined in terms of the shielded potential : 

1 - PVI 
,2 - F‘ - 

Dimensionless variables, denoted by a bar are then 

T. = r /a  

X = ?./a 

E = ka 

E = 2E,lV1 

so that E = E’. The potential has the form 

For convenience the variable t = ET., ie t = kr is used in the subroutine. 
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This gives the standard Ricatti-Bessel form for the wave equation when the potential 
vanishes. Equation (3) then becomes 

d2 1(1+ 1) 
dt2 t 2  

and equation (8) becomes 

3.2. Singularities of the phase equation 

If the phase function 6,(t) is considered as the dependent variable then by substituting 

in equation (18) we get 

For the potential given by (1) 6,(t) is in fact an increasing function of t .  For strong 
potentials it is therefore possible for 6, to pass many times through odd integer multiples 
of in. At such points S,  -, cc and numerical integration of equation (18) is not possible. 
Numerical tests show, however, that integration of equation (19), which has no such 
singularities, takes twice as long as for equation (18). This is because of the additional 
cost in function evaluations arising from the cos 6l and sin 6, terms. For greater efficiency 
the method of Calogero (1963) has been implemented in PHASE. Integration of equation 
(18) is interrupted when IS,/ > 1. A simple change of dependent variable is made 

s, = lis, 

and the transformed equation 

is integrated from the change-over point. When a further stage is reached at which 
Is,I > 1 the reverse technique is used. 

3.3. Normalized functions 

When t << 1 the value of n, may be large enough to cause overflow for moderate 1. In 
addition the phase equation has a singularity of order 1 at t = 0. To overcome these 
difficulties normalized Riccati-Bessel functions are computed when t < 1 : 
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Normalized dependent variables to replace S I  and SI are then introduced as follows : 

s, = s1/t2'+ 

3 - s 2 1 + 1  
1 - I t  

so that g1 = 1/3,. 
The phase equations are then respectively 

ds, 21+1-. t V  . 
dt t 
- = --SI - z( J,  + S,n,)' 

and 

d$ 21+1- t V  - 
- = -S+-( j,S+ . 
dt t E 

The last two equations now have only first-order sjngularities at t = 0. The modification 
to the Harwell subroutine required to generate j,, fiI is easily implemented, especially 
when it is observed that t < 1 lies above the transition line for all 1 values. The phase 
equations (18), (21), (24) and (25) cover all the cases we shall need. 

3.4. Initial values of S, 

The case p o  > 0 is easy to deal with because the wave equation can be solved in terms 
of the regular Ricatti-Bessel function. When p o  = 0 a power series solution is required. 

3.5. Programming details 

Integration of the phase equation is made in steps of 2Xk (in dimensioned quantities 
2Ik). After two steps have been computed the relative differences are tested for each 1 
value and when these become smaller than the predetermined relative accuracy EPS the 
limiting values of 6, ( I  = 0 to L,,,) are returned to the calling program. In practice 
EPS = 0.01 gives 0.01 relativeaccuracy in 6, over the rangeofparameters tested, 0 e I. 5 2, 

< E < lo3 (0 < 1 < 20). If the starting point c is less than unity (this always occurs 
if p o  = 0) then integration is halted within the subroutine at t = 1 and automatically 
restarted with the initial values computed at t = 1. This method is necessary because 
the phase equation has been transformed for t < 1 giving in effect a discontinuity at 
t = 1. 

The subroutine has been written for values of L,,, < 20 but this restriction can easily 
be removed. If po > 0 the user may replace the shielded potential Vl by any 
other non-negative function of r / I  where I is a positive parameter. Only one line of the 
program need be changed and this is clearly indicated in the source listing. 

4. Results 

To give some idea of the way in which the phase 6,(t) depends on the dimensionless 
distance t we show the results in figure 1 of the step-by-step integration of the phase 
equation (18) with 1 = 0, 1 and 2 for E = 50, X = 1, po = 0. The steep gradients at small 
distances, and less importantly the oscillatory behaviour, means that the program spends 
most of its computing time reaching the point t = 15. The relatively larger distance 
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over which 6,(t) for I = 0, 1 , 2  tend to their constant values takes proportionately much 
less computing time, for in this region the function 6,(t) is obviously uncomplicated 
enabling larger integration steps to be taken. In figure 2 the phase shift 6, is shown as a 
function of energy for 1 = 0, 1, 2 for X = 0.5, po = 0. 

15 30 
1 1 ,  , , , , I , , 
0 

I 

Figure 1. The phase function s,(t) for I = 0, 1 and 2 for 2 = 1, E = 50. 

1 I , , 1 , 1 1 ,  I , , , , , , , , I  , , I ,  , , / ,  I , , , , , , , , I  , , , ,/,, J 

lo3 o2 I 10 lo2 Id 
E 

Figure 2. The phase shift 6, as a function of energy for 1 = 0, 1 and 2;  1 = 0.5. 
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In table 1 below we give the computer time taken, for 10 equally spaced energies in 
the range 0.1 < E e 1 for the case X = 1 to evaluate 6,(1 = 0 to LmaX). 

Table 1. 

L,,, Time (s) Time per L value (s) 

2 9 0.30 
4 16 0.32 

10 50 0.45 
20 150 0.7 1 

The timings are for the 1904A using a program compiled in an optimized mode 
(compiler XFEW MK 3B). (The user should note carefully the fact that on the above 
machine for our program optimized code runs at least twice as fast as non-optimized 
code.) 
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